- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000001030000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Maggi, Francesco (4)
-
Restrepo, Daniel (4)
-
Novack, Michael (2)
-
Bonforte, Matteo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Maggi, Francesco; Restrepo, Daniel (, Analysis & PDE)
-
A hierarchy of Plateau problems and the approximation of Plateau's laws via the Allen--Cahn equationMaggi, Francesco; Novack, Michael; Restrepo, Daniel (, arxiv)We introduce a diffused interface formulation of the Plateau problem, where the Allen--Cahn energy is minimized under a volume constraint and a spanning condition on the level sets of the densities. We discuss two singular limits of these Allen--Cahn Plateau problems: when , we prove convergence to the Gauss' capillarity formulation of the Plateau problem with positive volume ; and when , and , we prove convergence to the classical Plateau problem (in the homotopic spanning formulation of Harrison and Pugh). As a corollary of our analysis we resolve the incompatibility between Plateau's laws and the Allen--Cahn equation implied by a regularity theorem of Tonegawa and Wickramasekera. In particular, we show that Plateau-type singularities can be approximated by energy minimizing solutions of the Allen--Cahn equation with a volume Lagrange multiplier and a transmission condition on a spanning free boundary.more » « less
-
Maggi, Francesco; Novack, Michael; Restrepo, Daniel (, arxiv)We provide, in the setting of Gauss' capillarity theory, a rigorous derivation of the equilibrium law for the three dimensional structures known as Plateau borders which arise in "wet" soap films and foams. A key step in our analysis is a complete measure-theoretic overhaul of the homotopic spanning condition introduced by Harrison and Pugh in the study of Plateau's laws for two-dimensional area minimizing surfaces ("dry" soap films). This new point of view allows us to obtain effective compactness theorems and energy representation formulae for the homotopic spanning relaxation of Gauss' capillarity theory which, in turn, lead to prove sharp regularity properties of energy minimizers. The equilibrium law for Plateau borders in wet foams is also addressed as a (simpler) variant of the theory for wet soap films.more » « less
An official website of the United States government

Full Text Available